\qquad
\qquad
Chemistry B Moles Packet

\qquad PAGE 2

CHEMISTRY WORKSHEET \# 1 MOLAR MASS

We are about to start on a unit of chemical calculations on how we calculate the relationships between the amounts of reactants and the amounts of products. For example, if we know the amount of reactants we have, we can use an organized, step-by-step approach to calculate how many products the chemical reaction will produce.

These problems involve numbers but no difficult mathematics. All you will ever have to do is add, multiply or divide. You will be expected to have a functioning calculator with you for every chemistry class. As we solve these problems we will apply the factor-label method you mastered early in the class, and we will frequently use scientific notation.

The only new concept we will introduce in this unit is the idea of a mole. A mole is a quantity of matter that we use for conversion purposes. We can convert from grams to moles, liters to moles (for gases), and atoms or molecules to moles. If you can convert any of these things to moles (and therefore moles to any of these things) we can convert grams to liters or molecules, liters to grams of molecules, and molecules to liters or grams.

Molar mass tells us the mass ("weight") of 1 mol of an atom or compound. In each case we simply calculate the sum of the "weights" of the atoms in the formula to determine the weight of a mole. These weights can be found on the periodic table.

EXAMPLE: Calculate the molar mass of a mole of iodine, I_{2}. Round to 2 decimal places.

$$
2 \mathrm{I}=2 \mathrm{X}(126.90)=\mathbf{2 5 3 . 8 0} \mathbf{g ~ I}_{\mathbf{2}} / \mathbf{m o l}
$$

EXAMPLE: Calculate the molar mass of a mole of aluminum sulfate, $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$. Round to 2 decimal places.

$$
\begin{aligned}
& 2 \mathrm{Al}=2 \mathrm{X}(26.98)=53.96 \\
& 3 \mathrm{~S}=3 \mathrm{X}(32.07)=64.14 \\
& +12 \mathrm{O}=12 \mathrm{X}(16.00)=192.00 \\
& \overline{\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}} \quad=\mathbf{3 1 0 . 1 0} \mathbf{g ~ A l}_{2}\left(\mathbf{S O}_{4}\right)_{3} / \mathbf{m o l}
\end{aligned}
$$

1. water $\mathrm{H}_{2} \mathrm{O}$
2. calcium chloride CaCl_{2}
3. copper(II) sulfate CuSO_{4}
4. silver nitrate AgNO_{3}
5. sulfuric acid $\mathrm{H}_{2} \mathrm{SO}_{4}$
6. calcium phosphate $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
7. sodium carbonate $\mathrm{Na}_{2} \mathrm{CO}_{3}$
8. ammonia NH_{3}
9. oxygen O_{2}
\qquad PAGE 4
CHEMISTRY WORKSHEET \# 2: THE MOLE AS A UNIT OF MASS
Now that you know how to find the mass of one mole of a substance (molar mass) you can easily find the mass of several moles or the mass of a fraction of a mole using the factor-label technique.

$1 \mathrm{~mol}=$ a molar mass of an atom/molecule (g/mol)

EXAMPLE: What is the mass of 5.00 moles of water $\mathrm{H}_{2} 0$?
STEP1: $2 \mathrm{H}=2 \mathrm{x}(1.01)=2.02 \quad$ STEP 2: ? grams $\mathrm{H}_{2} 0=5.00$ moles $\mathrm{H}_{2} 0 \times 18.02 \mathrm{~g} \mathrm{H}_{2} \underline{0}=\mathbf{9 0 . 1 0} \mathbf{g} \mathbf{H}_{2} \mathbf{O}$

$\mathrm{O}=1 \mathrm{x}(16.00)=16.00$	
$\mathrm{H}_{2} \mathrm{O}=$	18.02 g

NOW YOU TRY ONE: What is the mass of 0.50 moles of calcium carbonate CaCO_{3} ?
STEP 1: Ca =
STEP 2: ? $\mathrm{g} \mathrm{CaCO}_{3}=$
$\mathrm{C}=$
$3 \mathrm{O}=$
$\mathrm{CaCO}_{3}=$

USE A SEPARATE SHEET OF PAPER TO SOLVE THE FOLLOWING PROBLEMS. SHOW YOUR WORK. ROUND MOLAR MASSES TO TWO PLACES AFTER THE DECIMAL. ADD UNITS.

1. How many grams are there in 5.00 moles of lead Pb ?
2. How many grams are there in 2.00 moles of sulfuric acid $\mathrm{H}_{2} \mathrm{SO}_{4}$?
3. How many grams are there in 0.250 moles of sodium hydroxide NaOH ?
4. How many grams are there in 2.50 moles of potassium nitrate KNO_{3} ?
5. How many grams are there in 10.0 moles of lithium carbonate $\mathrm{Li}_{2} \mathrm{CO}_{3}$?

Now that you know how to find the mass of one mole of a substance you can easily find the number of moles there are in a given mass of the substance.

EXAMPLE: How many moles of calcium chloride are there in 333 grams of calcium chloride $\left(\mathrm{CaCl}_{2}\right)$?

STEP 1: $\mathrm{Ca}=1 \mathrm{x}(40.08)=40.0$ STEP 2: ?moles $\mathrm{CaCl}_{2}=333$ grams $\mathrm{CaCl}_{2} \times \underline{1 \mathrm{~mole} \mathrm{CaCl}}{ }_{2}=\mathbf{3} .00$ mole $\mathbf{C a C l}_{\mathbf{2}}$ | $2 \mathrm{Cl}=2 \times(35.45)=70.90$ |
| :--- |
| $\mathrm{CaCl}_{2} \quad=110.98 \mathrm{~g}$ |

USE THE SAME PAPER AS THE ABOVE PROBLEMS TO SOLVE THE FOLLOWING. SHOW YOUR WORK AND PUT UNITS ON EACH ANSWER!
6. How many moles of silver nitrate are there in 80.00 grams of silver nitrate AgNO_{3} ?
7. How many moles of phosphoric acid are there in 658 grams of phosphoric acid $\mathrm{H}_{3} \mathrm{PO}_{4}$?

9. How many moles of hydrogen peroxide are there in 1000.0 grams of hydrogen peroxide $\mathrm{H}_{2} \mathrm{O}_{2}$?
10. How many moles of magnesium chloride are there in 148 grams of magnesium chloride MgCl_{2} ?
\qquad PAGE 5

CHEMISTRY WORKSHEET \# 3 AVOGADRO'S NUMBER

One important property of a mole is that it means a definite number of "things" just like a dozen means a number of "things". While a dozen is only 12 particles a mole is a much larger number- 6.02×10^{23} particles. Elements generally exist as the particles we call atoms. A mole of carbon contains 6.02×10^{23} atoms of carbon.

However, we have learned about seven elements that exist as diatomic molecules- $\mathbf{H}_{2}, \mathbf{N}_{2}, \mathbf{O}_{2}, \mathbf{F}_{2}, \mathrm{Cl}_{2}, \mathrm{Br}_{2}$, and I_{2}. For these elements one mole is 6.02×10^{23} molecules. That is, 6.02×10^{23} molecules of hydrogen is one mole of hydrogen. In the same way, one mole of water contains $6.02 \times 10^{\mathbf{2 3}}$ molecules of water.

In all of the above examples one mole of any substance contained the same number of particles. But remember, they all had different masses. The mass of one mole of each material was equal to the molar mass. This is the same idea as the mass of a dozen. A dozen eggs, a dozen bricks, a dozen dump trucks all contain twelve items but the mass of a dozen eggs is certainly much different than the mass of a dozen bricks which is much different from the mass of a dozen dump trucks!

The number $6.02 \times 10^{\mathbf{2 3}}$ is known as Avogadro's number in honor of an Italian Professor of physics, Amadeo Avogadro, who did considerable work on the development of atomic theory and the mole concept in about 1810. Given this number we can calculate the number of atoms/molecules in a known number of moles or the number of moles in a given number of atoms/molecules.

$1 \mathrm{~mol}=6.02 \times 10^{23}$ atoms/molecules (Avogadro's Number)

Problems \#1-5 EXAMPLE: How many molecules of water are there in 3.00 moles of water?

$$
\text { ? molecules } \mathrm{H}_{2} 0=3.00 \text { motes } \mathrm{H}_{2} 0 \times \underline{6.02} \times 10^{23} \text { molecules of } \mathrm{H}_{2} \underline{0}=\mathbf{1 . 8 1} \times 1 \mathbf{1 0}^{\mathbf{2 4}} \text { molecules } \mathbf{H}_{2} \mathbf{0}
$$

$$
1 \operatorname{molg}_{2} \mathrm{O}
$$

Problems \#6-10 EXAMPLE: How many moles of neon are there in 2.408×10^{24} atoms of neon?
$?$ moles $\mathrm{Ne}=2.408 \times 10^{24}$ atoms $\mathrm{Ne} \times \frac{1 \text { mole } \mathrm{Ne}}{6.02 \times 10^{23} \text { atoms of } \mathrm{Ne}}=4.00$ moles Ne
USE A SEPARATE SHEET OF PAPER TO SET-UP AND SOLVE THE FOLLOWING PROBLEMS. If you do not know the formula, just write the name of the compound being discussed.

How many molecules are there in:

1. $\quad 2.00$ moles of ammonia?
2. 0.50 moles chlorine?
3. $\quad 0.250$ moles oxygen?
4. $\quad 4.00$ moles of sulfur dioxide?
5. $\quad 2.50$ moles of methane?

How many moles are there in:

6. 3.612×10^{24} molecules of phosgene?
7. 3.01×10^{23} molecules of freon?
8. $\quad 1.505 \times 10^{24}$ molecules of sucrose?
9. 1.806×10^{24} molecules of bromine?
10. 3.01×10^{24} atoms of argon?
\qquad HR: \qquad PAGE 6

CHEMISTRY WORKSHEET \# 4 MOLAR MASSES AND AVOGADRO'S NUMBER

Now that you know two definitions of a mole (a molar mass and an Avogadro's number of particles) you can combine these two definitions into one problem.

EXAMPLE: How many molecules are there in $\mathbf{9 0 . 1}$ grams of water?

EXAMPLE: What is the mass, in grams, of $\mathbf{3 . 0 1} \times \mathbf{1 0}^{\mathbf{2 3}}$ molecules of ammonia NH_{3} ?

$$
\begin{aligned}
& \mathrm{N}=1 \times(14.01)=14.01 \\
& \underline{3 \mathrm{H}=3 \mathrm{x}(1.01)=3.03} \\
& \mathrm{NH}_{3} \quad=17.04 \mathrm{~g}
\end{aligned}
$$

SOLVE THE FOLLOWING PROBLEMS ON A SEPARATE SHEET OF PAPER. YOU MUST SHOW ALL OF THE STEPS AND YOU MUST DO THE PROBLEM JUST AS ILLUSTRATED. INCLUDE UNITS!

1. How many molecules are there in $\mathbf{3 4 5}$ grams of carbon dioxide CO_{2} ?
2. What would be the mass, in grams, of 1.204×10^{24} molecules of sulfur dioxide SO_{2} ?
3. How many molecules of sucrose are there in $\mathbf{4 5 4}$ grams of sucrose $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$?
4. What would be the mass, in grams, of $\mathbf{1 . 8 0 6} \times \mathbf{1 0}^{\mathbf{2 4}}$ molecules of carbon monoxide CO?
5. How many molecules of water are there in $\mathbf{8 . 0 5 0} \times \mathbf{1 0}^{\mathbf{3}} \mathbf{g r a m s}$ of water $\mathrm{H}_{2} \mathrm{O}$?
6. How many oxygen molecules are in a flask that contains $\mathbf{1 . 4 3}$ grams of oxygen O_{2} ?
7. What would be the mass, in grams, of $\mathbf{1 . 5 0 5} \times \mathbf{1 0}^{\mathbf{2 3}}$ molecules of carbon disulfide CS_{2} ?
8. How many molecules of hydrogen chloride HCl would there be in $\mathbf{1 0 0 . 0 0} \mathbf{g r a m s}$ of this gas?
9. What would be the mass, in grams, of $\mathbf{2 . 4 0 8} \times \mathbf{1 0}^{\mathbf{2 4}}$ molecules of tetraphosphorus decaoxide $\mathrm{P}_{4} \mathrm{O}_{10}$?

Extra Challenge:

10. How many hydrogen molecules are there in 1 ton of hydrogen H_{2} ? (Hint: How many grams are there in 1 ton?)

We have learned two definitions of a mol, now we will learn a third. A mole can also be a measure of volume when we are talking about gases. AVOGADRO'S HYPOTHESIS SAYS THAT EQUAL VOLUMES OF GASES AT THE SAME TEMPERATURE AND PRESSURE CONTAIN EQUAL NUMBERS OF MOLECULES. Avogadro's statement makes sense and is possible because gases are mainly empty space-only about one thousandth of the space is actually filled with molecules. The molecules "fill" the remaining space by moving rapidly through it. So the difference in size between large molecules and small molecules is insignificant compared to the total volume the gas occupies. At standard temperature and presssure ($\mathbf{S T P}=\mathbf{O}^{\circ}$ Celcius and 1.00 atm pressure) one mole of any gas will have a volume of $\mathbf{2 2 . 4}$ liters. Once we know this we can convert from moles to liters or liters to moles for any gas at STP.

$1 \mathrm{~mol}($ of a gas $)=22.4 \mathrm{~L}($ at STP $)$

EXAMPLE: What is the volume, in liters, of a 2.00 mole sample of methane $\left(\mathrm{CH}_{4}\right)$ at STP?

$$
\text { \# L CH } 4 \text { = } 2.00 \text { moles } \mathrm{CH}_{4} \times \underset{1 \mathrm{moke} \mathrm{CH}_{4}}{22.4 \mathrm{~L} \mathrm{CH}_{4}}=\mathbf{4 4 . 8 0} \mathrm{L} \mathrm{CH}_{4}
$$

EXAMPLE: How many moles of ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$ are there in 5.60 liters of ethane?

$$
\text { \# moles } \mathrm{C}_{2} \mathrm{H}_{6}=5.60 \mathrm{~L}_{2} \mathrm{H}_{6} \times \frac{1 \text { mole } \mathrm{C}_{2}}{2} \underline{\mathrm{H}}_{6} \underline{0}=\mathbf{0 . 2 5} \text { mole } \mathrm{C}_{2} \mathbf{H}_{6}
$$

COMPLETE THE FOLLOWING PROBLEMS ON A SEPARATE SHEET OF PAPER USING THE SAME SET-UP AS SHOWN ABOVE. INCLUDE UNITS!

1. What is the volume, in liters, of 2.00 moles of hydrogen H_{2} at STP ?
2. What is the volume, in liters of 5.00 moles of oxygen O_{2} occupy at STP?
3. What is the volume, in liters, of 0.250 moles of carbon monoxide CO at STP?
4. What is the volume, in liters, of a 3.00 mole sample of carbon dioxide CO_{2} at STP ?
5. How many moles of chlorine are there in a 67.2 liter sample of chlorine Cl_{2} at STP ?
6. A 44.8 liter sample of nitrogen at STP will contain how many moles of nitrogen N_{2} ?
7. How many moles of ammonia are there in 405 liters of ammonia NH_{3} at STP?
8. How many moles of neon Ne would you need to fill a 33.6 liter container at STP?
9. How many moles of argon Ar are there in 5.00×10^{2} liters of argon at STP?
10. What is the volume, in liters, of 4.50 moles of fluorine F_{2} at STP?

Extra Challenge

11. How many moles of nitrogen are there in a $16,500 \mathrm{~mL}$ sample of nitrogen N_{2} at STP?

You now know three definitions of a mole: a molar mass $(\mathrm{g} / \mathrm{mol}), 6.02 \times 10^{23}$ atoms $/$ molecules and, for a gas, 22.4 liters at STP. We can use this information to convert grams to molecules or liters, molecules to grams or liters, or liters to grams or molecules.

EXAMPLE 1: What would be the volume in liters of 40.36 grams of neon at STP?

EXAMPLE 2: How many molecules would there be in 56 liters of carbon dioxide at STP?

$$
\text { \# molecules } \mathrm{CO}_{2}=56.0 \mathrm{~L}\left\langle\mathrm{O}_{2} \times \frac{1 \text { mole }^{2} \mathrm{CO}_{2}}{22.4 \mathrm{LCO}_{2}} \times \frac{6.02 \times 10^{23} \text { molecules } \mathrm{CO}_{2}}{1 \mathrm{molecO}_{2}}=\mathbf{1 . 5 1} \times 10^{24} \text { molecules } \mathbf{C O}_{2}\right.
$$

SOLVE THE FOLLOWING PROBLEMS ON A SEPARATE SHEET OF PAPER.

- YOU MUST USE COMPLETE AND PROPER SET-UPS.
- SHOW THE MOLAR MASS CALCULATION WHENEVER THE PROBLEM REQUIRES YOU TO DO ONE. INCLUDE UNITS

1. What would be the volume, in liters, of $\mathbf{8 5 . 5}$ grams of carbon monoxide CO at STP?
2. How many molecules would there be in $\mathbf{0 . 5 0 0}$ grams of carbon disulfide CS_{2} ?
3. What would be the mass, in grams, of $\mathbf{4 5 . 0}$ liters of nitrogen N_{2} at STP?
4. How many molecules of hydrogen H_{2} are in a balloon full of hydrogen with a volume of $\mathbf{5 . 3 4}$ liters at STP?
5. Your mommy buys you a helium He balloon at the circus. It has a volume of $\mathbf{4 . 0 0}$ liters at STP. What mass of helium, expressed in grams, does this balloon contain?
6. How many molecules of ammonia would there be in $\mathbf{4 0 . 0}$ grams of ammonia NH_{3} ?
7. What would be the mass, in grams, of $\mathbf{3 . 5 0} \times \mathbf{1 0}^{25}$ molecules of chlorine Cl_{2} ?
8. What volume, expressed in liters, would $\mathbf{5 0 . 0}$ grams of fluorine F_{2} occupy at STP?
9. How many grams of oxygen would there be in $\mathbf{1 . 0 0}$ liter of oxygen O_{2} at STP?

Extra Challenge:

10. How many molecules of water are there in 10 lbs of water?
\qquad

Now we have studied the idea of moles and learned three definitions of a mole:
(1) A molar mass ($\mathrm{g} / \mathrm{mol}$)
(2) 6.02×10^{23} atoms/molecules (Avogadro's Number)
(3) 22.4 liters of gas at STP.

Solve the following problems involving the mole concept. (If you are having difficulty go back and review mole worksheets 1-6.)

Problems 1-2: moles to grams AND grams to moles

1. How many grams are there in 11.8 moles of sodium hydroxide NaOH ?

Ans. 472 grams sodium hydroxide
2. How many moles are there in 215 grams of water $\mathrm{H}_{2} \mathrm{O}$?

Ans. 11.9 moles water

Problems 3-4: moles to molecules AND molecules to moles

3. How many molecules are there in 3.85 moles of carbon tetrachloride CCl_{4} ?

Ans. 2.32×10^{24} molecules carbon tetrachloride
4. How many moles are there in 8.25×10^{26} molecules of methane CH_{4} ?

Ans. 1.37×10^{3} moles of methane
Problems 5-6: grams to moles to molecules AND molecules to moles to grams
5. How many molecules are there in 295 grams of ammonia NH_{3} ?

Ans. 1.04×10^{25} molecules of ammonia
6. How many grams are there in 8.95×10^{26} molecules of carbon disulfide CS_{2} ?

Ans. 1.13×10^{5} grams of carbon disulfide
\qquad HR: \qquad PAGE 10

Problems 7-8: moles to liters AND liters to moles

7. What would be the volume, in liters measured at STP, of 9.75 moles of carbon monoxide CO?

Ans. 2.18×10^{2} liters of carbon monoxide
8. How many moles would there be in 5.25 liters of oxygen O_{2} measured at STP?

Ans. 0.234 moles or 2.34×10^{-1} moles oxygen

Problems 9-10: grams to moles to liters AND liters to moles to grams

9. What is the volume, measured in liters at STP, of 285 grams of the gas acetylene, $\mathrm{C}_{2} \mathrm{H}_{2}$?

Ans. 245 liters of acetylene
10. How many grams are there in 512 liters (measured at STP) of propane, $\mathrm{C}_{3} \mathrm{H}_{8}$?

Ans. 1.01×10^{3} grams of propane
Problems 11-12: molecules to moles to liters AND liters to moles to molecules
11. What would the volume be, measured in liters at STP, of 3.01×10^{25} molecules of fluorine F_{2} ?

Ans. 1.12×10^{3} liters of fluorine
12. How many molecules are there in 995 liters of sulfur dioxide SO_{2} at STP?

Ans. 2.67×10^{25} molecules of sulfur dioxide
Problems 13-16: Mixed Problems- Think about what type of conversion you are doing!
13. How many molecules are there in 2270 g of table sugar, sucrose $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$.

Ans. 3.99×10^{24} molecules of sucrose
14. How many molecules would there be in $1.135 \times 10^{6} \mathrm{~g}$ of chlorine Cl_{2} ?

Ans. 9.64×10^{27} molecules of chlorine
15. What would the mass be, in grams, of 348 liters of carbon dioxide CO_{2} measured at STP?

Ans. 684 grams of carbon dioxide
16. How many molecules of nitrogen are there in 200 L of nitrogen N_{2} measured at STP?

